A Framework for Deflated and Augmented Krylov Subspace Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for Deflated and Augmented Krylov Subspace Methods

We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) “removes” certain parts from the operator making it singular, while augmentation a...

متن کامل

Deflated and Augmented Krylov Subspace Methods: A Framework for Deflated BiCG and Related Solvers

We present an extension of the framework of Gaul et al. (SIAM J. Matrix Anal. Appl. 34, 495–518 (2013)) for deflated and augmented Krylov subspace methods satisfying a Galerkin condition to more general Petrov–Galerkin conditions. The main goal is to apply the framework to the biconjugate gradient method (BiCG) and some of its generalizations, including BiCGStab and IDR(s). For such application...

متن کامل

Deflated and Augmented Krylov Subspace Techniques

We present a general framework for a number of techniques based on projection methods onàugmented Krylov subspaces'. These methods include the deeated GM-RES algorithm, an inner-outer FGMRES iteration algorithm, and the class of block Krylov methods. Augmented Krylov subspace methods often show a signiicant improvement in convergence rate when compared with their standard counterparts using the...

متن کامل

Domain Decomposition Methods and Deflated Krylov Subspace Iterations

The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) preconditioner are fast and successful preconditioners within domain decomposition methods for solving partial differential equations. For certain elliptic problems these preconditioners lead to condition numbers which are independent of the mesh sizes and are independent of jumps in the coefficients (BNN). Here w...

متن کامل

Analysis of Augmented Krylov Subspace Methods

Residual norm estimates are derived for a general class of methods based on projection techniques on subspaces of the form K m + W, where K m is the standard Krylov subspace associated with the original linear system, and W is some other subspace. Thesèaugmented Krylov subspace methods' include eigenvalue deeation techniques as well as block-Krylov methods. Residual bounds are established which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2013

ISSN: 0895-4798,1095-7162

DOI: 10.1137/110820713